MATHEMATICS SS1 LESSON NOTE SECOND TERM

ALL LESSON NOTES 

| QUESTIONS AND ANSWERS 

JOBS 

TRAININGS FOR TEACHERS

| WORKSHEETS

 MATHEMATICS SS1 LESSON NOTE SECOND TERM

SECOND TERM E-LEARNING NOTE

 

SUBJECT: MATHEMATICS                                                                                             CLASS: SS 1

 

SCHEME OF WORK

 

WEEK            TOPIC

1.                       Quadratic Equation by (a) Factorization (b) Completing the square method

2.                       General Form of Quadratic Equation leading to Formular Method

from ax2 + bx + c = 0

3.                       Solutions of Quadratic Equation by Graphical Methods:

(a)   Reading the Roots from the Graph

(b)  Determination of the Minimum and Maximum Values

(c)   Line of Symmetry.

4.                       Idea of Sets:

(a)   Universal Sets, Finite and Infinite Sets, Empty Set, Subset

(b)  Idea of Notation for Union and Intersection of Sets

5.                       Complements of Sets:

(a)   Disjoints of Null.

(b)  Venn Diagramand its Use in Solving Problems Involving two and three Sets Relation to Real Life Situations.

6.                       Review of the First Half Term’s Work and Periodic Test

7.                       Trigonometric Ratios

(a)   Sine, Cosine, Targentof Acute Angles

(b)  Use of Tables of Trigonometric Ratios

(c)   Determination of Length of Chord

(d)  Using Trigonometric Ratios

(e)   Graph of Sine and Cosine for Angles 0o = x

8.                       (a) Application of Sine, Cosine and Tangent, Simple Problems with Respect to Right Angle Triangles.

(b) Angles of Elevation and Depression

(c) Bearing and Distances of Places Strictly Application of Trigonometric Ratio.

9.                       (a) Introduction of Circle and its Properties

(b) Calculation of Length of Arc and Perimeter of a Sector

(c) Area of Sectors and Segments. Area of triangles

10.                    Logic

(a)   Simple True and False Statements

(b)  Negative and Contra Positive of Simple Statement.

(c)   Antecedents, Consequence and Conditional Statement (implication)

 

REFERENCE BOOK

·      New General Mathematics SSS 1 M.F. Macrae et al

·      WABP Essential Mathematics For Senior Secondary Schools 1 A.J.S Oluwasanmi

WEEK ONE

Topic: Quadratic equation by (a) Factorization (b) Completing the square method

Quadratic Equations

A quadratic equation contains an equal sign and an unknown raised to the power 2. For example:

2x2 – 5x – 3 = 0

n2 + 50 = 27n

0 = (4a - 9)(2a + 1)

49 = k2

 

Are all quadratic equations.

Discussion: can you see why

0 = (4a – 9)(2a + 1) is a quadratic equation?

One of the main objectives of the chapter is to find ways of solving quadratic equations,

i.e. finding the value(s) of the unknown that make the equation true.

 

Solving Quadratic Equations

One way of solving quadratic equation is to apply the following argument to a quadratic expression that has been factorized.

If the product of two numbers is 0, then one of the numbers (or possibly both of them) must be 0. For example,

3  0 = 0, 0  5 = 0 and 0  0 = 0

In general, if a  b = 0

            Then either a = 0

                        Or b = 0

                        Or both a and b are 0

 

Example 1

Solve the equation (x – 2)(x + 7) = 0.

If (x – 2)(x + 7) = 0

Then either x – 2 = 0 or x + 7 = 0

                        x = 2 or -7

 

Example 2

Solve the equation d(d – 4)(d + 62) = 0.

(3a + 2)(2a – 7) = 0, then any one of the four factors of the LHS may be 0,

i.e d = 0 or d – 4 = 0 or d + 6 = 0 twice.

 d = 0, 4 or -6 twice.

 

EVALUATION

Solve the following equations.

1.     3d2(d – 7) = 0

2.     (6 – n)(4 + n) = 0

3.     A(2 – a)2(1 + a) = 0

 

Solving quadratic equations using factorization method

The LHS of the quadratic equation m2 – 5m – 14 = 0 factorises to give (m + 2)(m – 7) = 0.

 

Example 1

Solve the equation 4y2 + 5y – 21 = 0

4y2 + 5y – 21 = 0

 (y + 3)(4y – 7)  = 0

either y + 3 = 0                   or         4y – 7 = 0

            y = - 3 or         4y = 7

            y = - 3 or         y = 7/4

            y = -3  or         1

check: by substitution:

if y = -3

4y2 + 5y – 21 = 36 – 15 – 21 = 0

If y = 1,

            4y2 + 5y – 21 = 4 x 7/4 x 7/4 + 5 x 7/4 – 21

                        =  – 21 = 0

 

Example 2

Solve the equation m2 = 16

Rearrange the equation.

If m2 = 16

Then m2 – 16 = 0

Factorise (difference of two squares)

(m - 4)(m + 4) = 0

Either m – 4 = 0         or         m + 4 = 0

            m = +4 or         m = -4

            m = 4

 

EVALUATION

Solve the following quadratic equations:

1.     h2 – 15h + 54 = 0

2.     12y2 + y – 35 = 0

3.     4a2 – 15a = 4

4.     v2 + 2v – 35 = 0

 

GENERAL EVALUATION

Solve the following equations:

1.     y2(3 + y) = 0

2.     x2(x + 5)(x - 5) = 0

3.     (v - 7)(v - 5)(v - 3) = 0

4.     9f2 + 12f + 4 = 0

  MATHEMATICS SS1 LESSON NOTE SECOND TERM

WEEKEND ASSIGNMENT 

Solve the following equations. Check the results by substitution.

1.     (4b - 12)(b - 5) = 0    A. ½, 4      B. 3, 5       C. 4, 6        D.5, 3

2.     (11 – 4x)2 = 0        A., 3      B.2, 3       C. 2 twice           D. 2 twice 

3.     (d – 5)(3d – 2) = 0    A. 5,      B. 4, 5     C. 5, 9          D. , 5

Solve the following quadratic equations

4.     u2 – 8u – 9 = 0A. – 9, 1      B. -1, 9    C. 1, 8          D. 9 , -1

5.   c2 = 25 A. 5     B. -5     C.+5          D.5

 

THEORY 

Solve the equation

1.     2x2 = 3x + 5

2.     a2 – 3a = 0

3.     p2 + 7p + 12 = 0

 

 

WEEK TWO

TOPIC:General form of quadratic equation leading to Formular method

CONTENT

·      Derivative of the Roots of the General Formof Quadratic Equation.

·      Using the FormularMethods to solve Quadratic Equations

·      Sum and Product of quadratic roots.

 

Derivative of the Roots of the General Form of Quadratic Equation

The general form of a quadratic equation is ax2 + bx + C = 0. The roots of the general equation are found by completing the square.

 

ax2 + bx + C = 0

Divide through by the coefficient of x2.

 

ax2  +bx +  C   =  0

aaa

 

x2 + bx + C    = 0

aa

x2  +  b   x    = 0  -   C

aa

 

x2 + bx  =  - C

aa

 MATHEMATICS SS1 LESSON NOTE SECOND TERM

The square of half of the coefficient of x is

 

        ½ x b 2   =      b 2

a                2a

 

Add       b2  to both sides of the equation.

 2a

x2 + bx +        b 2= - C+b2

2a2aa   2a

= - C+ b2

a       4a2

           x +  b2   =  - 4ac  + b2

                  2a                      4a2

i.e       x +b 2   =      b2 – 4ac

                2a                     4a2

Take square roots of both sides of the equation :

             =

 

i.e  x + b= ± √ b2 – 4ac

2a        2a

 

x =  

 

Hence

            x  =  -b ±√ b2 – 4ac

                             2a

 

EVALUATION

Suppose thegeneral  quadratic equation is Dy2 + Ey  + F = 0

Using the method of completing the square, derive the roots of this equation

 

Using the FormularMethods to Solve Quadratic Equations

Examples

Use the formula method to solve the following equations. Give the roots correct to 2 decimal places:

i.               3x2  - 5x – 3 = 0

ii.             6x2 + 13x + 6 = 0

iii.            3x2 – 12x + 10 = 0

Solution

1. 3x2 – 5x – 3 = 0

Comparing 3x2 – 5x – 3 = 0

With ax2 + bx+  C = 0

a = 3, b = -5, C = -3

 

Since

X = -b ±√b2 – 4ac

                      2a

x = -(-5) ±√ (-5)2 – 4 x 3 x -3

2 x 3

x =  + 5  ± √ 25 + 36

                          6

x =    + 5 ±√61

               6

x = + 5 + 7.810    =  + 12.810

                 6                    6

or

x = +5 – 7.810     = -2.810

               6                   6

  x =  12.810 or x =  - 2.810

             6                           6

x =  12. 810     or x =- 2.810

              2                       6

i.e.x = 2.135  or x = -0.468

x = 2.14 or x = -0.47

to 2 decimal places

(2) 6x2  + 13x  + 6=0

comparing 6x2  + 13x  + 6=0

with ax2 +bx + c = 0

a= 6, b =13,  c = 6

Since

x =-b ± √ b2 – 4ac

                      2a

x = - 13 ±√ (13)2 – 4 x 6 x 6

                             2 x 6

x = -13 ±√169  - 144

                         12

x =- 13 ±√25

           12

x = =-13 ± 5

            12

x =  -13 + 5  or x = -13 – 5

           12                     12

x = -8    or x = - 18

        12               12

x= -2    or x = -3

3                       2

x=- 0.666 or x = - 1.50

i.e x= 0.67 or x = -150 to 2 decimal places .

  MATHEMATICS SS1 LESSON NOTE SECOND TERM

(3)  3x2 – 12x + 10 = 0

comparing 3x2 – 12x + 10 = 0 with ax2 +bx + c = 0, then

a = 3, b= -12, c = 10.

Since

X = -b ± √b2 – 4ac

                  2a

then

x = - (-12) ±√(-12)2 -4 x 3 x 10

                              2 x 3

x = + 12 ±√ 144 – 120

                 6

x =  + 12 ±√24

     6

x =  12 ± 4.899

                6

x =   + 12  + 4.899   =  16.899

                   6                     6

or x =  + 12 – 4.899   =   7.101

6                             6

i.e x  =   16.899   or x =  7.101

                   6                       6

x = 2.8165  or x = 1.1835

i.e . x = 2.82 or x = 1.18 to 2 decimal places.

 MATHEMATICS SS1 LESSON NOTE SECOND TERM

DO YOU WANT FULL NOTE JUST FOR 700 NAIRA ONLY, 

PLEASE CLICK ON THE LINK BELOW

CLICK HERE TO CHAT WITH US ON WHATSAPP 

+2349123700105

Comments